Animal Research

Latest News

How Intestinal Worms Hinder Tuberculosis Vaccination

Written by PLOS

New research in mice suggests that chronic infection with intestinal worms indirectly reduces the number of cells in lymph nodes near the skin, inhibiting the immune system’s response to the Bacille Calmette-Guerin (BCG) vaccine for tuberculosis. Xiaogang Feng of Karolinska Institutet in Stockholm, Sweden, and colleagues present these findings in PLOS Pathogens.

Many people worldwide receive the BCG vaccine to boost their immune response to bacteria that cause tuberculosis, lowering risk of the disease. Previous studies have shown that the vaccine, which is injected into the skin, is less effective in people with chronic intestinal worm infections, but the reason for this inhibition was unclear. Read more.

Published May 21, 2018, by ALN

NIH-funded researchers identify target for chikungunya treatment

NIH News Release

Photo Credit: NIH. Female (left) and male (right) Aedes aegypti mosquitoes. Female A. aegypti mosquitoes can carry chikungunya virus. NIAID

Scientists have identified a molecule found on human cells and some animal cells that could be a useful target for drugs against chikungunya virus infection and related diseases, according to new research published in the journal Nature. A team led by scientists at Washington University School of Medicine in St. Louis conducted the research, which was funded in part by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. Read more.

Published May 21, 2018, by NIH

Stem cell signaling drives mammary gland development and, possibly, breast cancer

Written by: Katherine Unger Baillie

A Penn-led team identified Dll1, a signaling molecule as a marker of mammary gland stem cells, and one that plays a vital role in normal development of the mammary tissue. Above, a cross-section of a mouse mammary gland. (Image: Sushil Kumar and Rumela Chakrabarti)

The human body develops most tissue types during fetal development, in a mother’s uterus. Yet one only tissue develops after birth: the mammary gland. This milk-producing organ, a defining characteristic of mammals, is also the site of one of the most common cancers, breast cancer, which affects roughly one in eight women in the United States over the course of their lifetime. Read more.

Published May 17, 2018, by Penn Today, Office of University of Pennsylvania

Stem Cell Implants Improve Monkeys’ Grip After Spinal Cord Injury

Written by: Ashley Yeager

Photo credit: The Scientist

Human neural stem cells transplanted into the injured spines of monkeys matured into nerve cells, spurring neuronal connections and giving the animals an improved ability to grasp an orange, researchers report today (February 26) in Nature Medicine.

“This type of cellular therapy, though still in its infancy, may eventually be a reasonable approach to treating central nervous system injury and possibly even neurodegenerative disease in humans,” Jonathan Glass, a neurologist at Emory University School of Medicine, tells The Scientist by email. Glass, who was not involved in the study, notes that the differentiation of stem cells over time is “impressive,” as is their ability to make connections in the monkeys’ central nervous systems, but more work needs to be done to show if the cells can grow extremely long axons to connect motor and sensory neurons after spinal injury in humans. Read more.

Published by The Scientist February 26, 2018

Cancer ‘vaccine’ eliminates tumors in mice

Written by: Krista Conger

Ronald Levy (left) and Idit Sagiv-Barfi led the work on a possible cancer treatment that involves injecting two immune-stimulating agents directly into solid tumors. Photo credit Steve Fisch, Stanford Univeristy

Activating T cells in tumors eliminated even distant metastases in mice, Stanford researchers found. Lymphoma patients are being recruited to test the technique in a clinical trial.

Injecting minute amounts of two immune-stimulating agents directly into solid tumors in mice can eliminate all traces of cancer in the animals, including distant, untreated metastases, according to a study by researchers at the Stanford University School of Medicine.

The approach works for many different types of cancers, including those that arise spontaneously, the study found.

The researchers believe the local application of very small amounts of the agents could serve as a rapid and relatively inexpensive cancer therapy that is unlikely to cause the adverse side effects often seen with bodywide immune stimulation. Read more.

Published by Stanford University January 31, 2018 

New hope for stopping an understudied heart disease in its tracks

Written by: Silke Schmidt

Biomedical engineering professor Kristyn Masters handles samples in her lab, where she and colleagues identified the early stages of a process that may eventually cause aortic stenosis, a severe narrowing of the aortic valve that reduces blood flow to the body and weakens the heart. Photo credit: Stephanie Precourt UNIVERSITY of WISCONSIN–MADISON

The diminutive size of our aortic valve — just shy of a quarter — belies its essential role in pushing oxygen-rich blood from the heart into the aorta, our body’s largest vessel, and from there to all other organs. Yet for decades, researchers have focused less on damaged valves than on atherosclerosis, the gradual hardening of the blood vessels themselves.

Thanks, in part, to pigs at the University of Wisconsin–Madison’s Arlington Agricultural Research Station, scientists now are catching up on understanding the roots of calcific aortic valve disease (CAVD).

“For a long time, people thought CAVD was just the valvular equivalent of atherosclerosis,” says Kristyn Masters, a professor of biomedical engineering at UW–Madison. “Today, we know that valve cells are quite unique and distinct from the smooth muscle cells in our blood vessels, which explains why some treatments for atherosclerosis, such as statins, don’t work for CAVD, and why the search for drugs has to start from scratch.” Read more.

Published on December 25th, 2017 by University of Wisconsin 

Monkeys infected by mosquito bites further Zika virus research

Written by: Chris Barncard

A vacuum tube holds a blood-fed strain of Aedes aegypti mosquito in place under a microscope in a research lab insectary in the Hanson Biomedical Sciences Building at the University of Wisconsin-Madison on May 17, 2016. (Photo by Jeff Miller/UW-Madison)

Monkeys who catch Zika virus through bites from infected mosquitoes develop infections that look like human Zika cases, and may help researchers understand the many ways Zika can be transmitted.

Researchers at the University of Wisconsin–Madison infected rhesus macaques at the Wisconsin National Primate Research Center with Zika virus one of two ways: by allowing mosquitoes carrying the virus to feed on the monkeys or by injecting virus under the skin, the common method for infecting animals in laboratory studies.

The differences between the resulting infections — reported today (Dec. 13, 2017) in the journal Nature Communications — were subtle, but will be useful as scientists continue to learn more about Zika after a high-profile epidemic in the Americas caused grave birth defects. Read more.

Published by University of Wisconsin-Madison December 13, 2017

A Diabetes Drug Has ‘Significantly Reversed Memory Loss’ in Mice With Alzheimer’s

Written by: Fiona MacDonald

A drug developed for type 2 diabetes has “significantly reversed memory loss” in mice with Alzheimer’s disease, and researchers now want to test it on humans.

The treatment is exciting for scientists because it works by protecting the brain cells attacked by Alzheimer’s disease in three separate ways, rather than relying on a single approach.

And seeing as the drug has already been tested and approved for use in humans, it’s something that could hit the market a lot faster than other experimental treatment options. Read more.

Published by Science Alert Jan 2, 2018

Turning Piglets Into Personalized Avatars for Sick Kids

Written by: Ed Yong

A gene-edited pig with an NF-1 mutation. Photo credit: Jeff Miller, University of Wisconsin-Madison

A team of scientists wants to accelerate research into a genetic disorder by using CRISPR to copy unique mutations from affected children into pigs.

When Charles Konsitzke and Dhanu Shanmuganayagam first met, they were both just trying to get some peace and quiet. It was early 2014, and they were representing the University of Wisconsin-Madison at a fancy event to promote the university’s research to local politicians. After hours of talking to senators, Shanmuganayagam was fried, and went for a walk to clear his head. That’s when he bumped into Konsitzke, an administrator at the University of Wisconsin’s Biotechnology Center. They introduced themselves, and discussed their work. Shanmuganayagam said that he ran a facility that rears miniature pigs, which are genetically engineered to carry mutations found in human genetic disorders. Scientists can study the mini-pigs to better understand those diseases.

“And I said: I have a project for you,” Konsitzke recalls.

Konsitzke’s son Mason, now aged 7, was born with little brown birthmarks on his buttocks. Many kids have one or two of these café-au-lait spots and at first, Konsitzke thought they were cute. But after more appeared, he did some research and found that such spots are a common symptom of neurofibromatosis type 1 (NF-1)—an incurable inherited disease. Around Mason’s first birthday, a pediatrician confirmed the diagnosis. Read more.

Published by The Atlantic December 13, 2017

Texas Zika Researchers Studying Infected Primates To Help Prevent Birth Defects

Written by Joey Palacios

Photo credit: Texas Biomedical Research Institute

Scientists at Texas BioMedical Research Institute in San Antonio are using a type of primate to help prevent birth defects caused by the Zika virus. Texas BioMed is using four marmosets as its animal model for Zika infection. Virologist Dr. Jean Patterson said Zika infection in marmosets is similar to that in humans.

“Like humans, they develop almost immediate Viremia — meaning they have virus in their blood — and, for the males, after the virus declines in blood it then goes into semen, saliva and blood,” she said. Read more. 

Published December 11, 2017, by Texas Public Radio